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Tenure decisions, key decisions in academic institutions, are primarily based on subjective assessments of candidates. Using
a large-scale bibliometric database containing 198,310 papers published 1975–2012 in the field of operations research (OR),
we propose prediction models of whether a scholar would perform well on a number of future success metrics using
statistical models trained with data from the scholar’s first five years of publication, a subset of the information available
to tenure committees. These models, which use network centrality of the citation network, coauthorship network, and a
dual network combining the two, significantly outperform simple predictive models based on citation counts alone. Using
a data set of the 54 scholars who obtained a Ph.D. after 1995 and held an assistant professorship at a top-10 OR program
in 2003 or earlier, these statistical models, using data up to five years after the scholar became an assistant professor and
constrained to tenure the same number of candidates as tenure committees did, made a different decision than the tenure
committees for 16 (30%) of the candidates. This resulted in a set of scholars with significantly better future A-journal paper
counts, citation counts, and h-indexes than the scholars actually selected by tenure committees. These results show that
analytics can complement the tenure decision-making process in academia and improve the prediction of academic impact.
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1. Introduction
In academia, some of the most important decisions fac-
ing personnel and funding committees concern young re-
searchers. Personnel committee members typically must
decide whether to grant tenure based on evidence from
less than a decade of research output following graduation
with a doctorate, whereas funding committees must decide
whether to provide crucial early-career grants to scientists
based on a few years of research. Typically, the decision
process is based on subjective assessments of the com-
mittee regarding the quality of a candidate’s research and
support letters, and the use of quantitative methods in this
process is typically limited.

The impact of these decisions is not solely limited to
scholars’ careers, but also influences the ranking of depart-
ments, the prestige of universities, and the functioning of the

scientific enterprise. The financial and organizational impli-
cations of these early-career academic decisions are large.
A tenured faculty member will receive millions of dollars
in career compensation and will occupy a faculty spot for
decades. Meanwhile, the National Science Foundation pro-
vided $5.8 billion in research funding in 2014 (National
Science Foundation 2014b), including $220 million specif-
ically for young researchers (National Science Foundation
2014a). Given the stakes, we feel it is time for a “Moneyball
moment” in academia, in which models predicting future
academic outcomes are used to support decisions regarding
early-career faculty.

Considering the importance of academic decisions, it is
not surprising that the measurement of scholars’ impact has
received extensive attention in the literature. Most notably,
Hirsch (2005) presented the h-index, where a scientist has
index h if h of her N papers have at least h citations each,
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and the other N − h papers have no more than h citations
each. Several papers have offered extensions, modification
and alternatives to the h-index (see Bornmann et al. 2008
for a comparison of nine different variants of the h-index).
Podsakoff et al. (2008) produced a ranking of scholars in
the field of management based on the total number of cita-
tions per author taking into account the attributes of the
researcher’s academic career (years in the field, graduate
school attended, editorial board memberships, etc.).

Although early-career prediction of a researcher’s future
academic success is of particular interest to personnel and
funding committees, it has received limited attention in the
literature. Most studies that predict a researcher’s future
citations have relied on data from later in a researcher’s
career, often requiring a decade or more of observa-
tion (Dorsey et al. 2006, Hirsch 2007, Hönekopp and Khan
2012, Mazloumian 2012). Similarly, research to predict
recipients of prestigious research awards has relied on data
from late in a researcher’s career. Garfield and Welljams-
Dorof (1992) found that high ranking of an author by num-
ber of citations in a specific field is positively correlated
with receiving Nobel Prizes. In Acuna et al. (2012), the
authors present a model that attains high-quality predictions
of future academic results for young life scientists. Follow-
up research in a population of physicists showed that the
model’s performance deteriorates considerably on scholars
very early in their careers (Penner et al. 2013); authors
of these studies discuss the strengths and weaknesses of
models to predict scientists’ future impact in Acuna et al.
(2013). In Yang et al. (2011), the authors predict research
productivity of urology researchers 2–4 years after resi-
dency given their publication history during residency, a
time frame not representative of their medium- or long-
term academic success. Importantly, no studies to date
have addressed whether early-career predictions of schol-
ars’ future academic success can be used to improve the
decisions made by tenure committees today.

In this work, we study how the network centrality of
papers in the citation network, authors in the coauthor-
ship network, and both papers and authors in a dual net-
work combining the two, can be integrated into a future
impact prediction algorithm. The idea to include network
indexes into prediction methods stems from the fact that
a citation represents a flow of information, and a research
idea presented in one paper is built upon in another
paper. Recent literature relates network structure properties
to information dissemination in networks (Valente 1996,
Katona et al. 2011). In the coauthorship network, centrality
of an author may indicate better access to new informa-
tion, better opportunities for new collaborations, and mul-
tidisciplinary research interests (Newman 2004). Structural
importance of an author (e.g., higher centrality) may indi-
cate that the author connects structural holes—subnetworks
that are not otherwise connected (Burt 1995)—and is a
broker of information. Additionally, people with high cen-
trality have been found to have a competitive advantage

over their peers and are more likely to be recognized as
top performers (Burt 1995, 2005). Moreover, Goldenberg
et al. (2012) found that in a content dual network structure,
nodes with higher centrality bridge these structural holes
and facilitate content exploration.

Our contributions include the following:
1. Using a bibliometric database of papers in the Opera-

tions Research (OR) literature, we predict if a scholar will
perform well on a number of success metrics using statisti-
cal models trained only on publications within the scholar’s
first five years of publication.

2. We evaluate whether these statistical models could be
used to improve the future publication metrics of scholars
tenured at highly ranked OR programs. Using a data set
of the 54 scholars who obtained a Ph.D. after 1995 and
held an assistant professorship at a top-10 OR program in
2003 or earlier, these statistical models, using data up to
five years after the scholar became an assistant professor
and constrained to tenure the same number of candidates
as tenure committees did, made a different decision than
the tenure committees for 16 (30%) of the candidates. This
resulted in a set of scholars with significantly better future
A-journal paper counts, citation counts, and h-indexes than
the scholars actually selected by tenure committees.

Our paper is structured as follows. In §2, we describe our
data sources and the measures we use to perform network
analysis. In §3, we present models to predict a scholar’s
future success using only early-career data, and in §4 we
analyze if these models could be used to improve the future
publication metrics of scholars tenured at top OR programs.
Finally, we discuss the implications and limitations of this
work in §5.

2. Data and Measures
Before describing and evaluating prediction models for
future academic success, we describe our data sources for
this study and the measures we use to perform network
analysis and to evaluate the success of scholars.

2.1. Bibliometric Database

We collected data from the Thomson Reuters Web of Sci-
ence (WOS) on all papers in journals or conference pro-
ceedings labeled as part of OR. In total, we obtained
records for 198,310 papers published between 1975 and
2012. We additionally collected 398,871 papers in the WOS
that are not in the OR field but that cite one of the OR
papers and 400,850 papers in the WOS that are not in
the OR field but that are cited by one of the OR papers.
Because of overlaps between the non-OR papers citing
and cited by OR papers, we obtained a final data set of
752,562 papers.

In addition to information about papers, we obtained
records of 1,489,509 citations to an OR paper and
1,293,378 references from the OR papers. Because of OR
papers referencing other OR papers, we obtained a total of
2,206,116 citations.
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2.2. Name Disambiguation

Bibliometric entries from the WOS provide either the first
initial and last name or the first and last name for the
authors of each paper, leaving ambiguity as to whether two
authors sharing the same first initial and last name are in
fact the same person. To address this issue, we performed
name disambiguation, which associates each author on each
paper with an author cluster that represents a single person.
Details of our name disambiguation approach are provided
in Appendix A.

Across the 198,310 WOS papers and 427,127 author/
paper pairs in the OR field, we identified 136,313 author
clusters using this approach. In §3, in which we predict
future success of authors, we limit analysis to the 43,047
authors whose first publication was dated 1995 or earlier.

2.3. Network Analysis

After performing name disambiguation, we built three
networks:

• We built the citation network, in which nodes repre-
sent papers and directed edges 4p11 p25 represent paper p1

citing paper p2. The full citation network contains 752,562
nodes representing all of the papers in WOS in the field of
OR, citing a paper in OR, or cited by a paper in OR, as
well as 2,206,116 directed edges representing all citations
to or from any of the 198,310 OR papers.

• We built the coauthorship network, in which nodes
represent authors and undirected edges 4a11 a25 represent
authors a1 and a2 coauthoring at least one paper. The full
coauthorship network contains 136,313 nodes represent-
ing authors of any of the 198,310 OR papers, as well as
290,301 undirected edges.

• We built the academic dual network, which consists
of the union of the citation and coauthorship networks,
in addition to undirected edges 4a1p5, which indicate that

Figure 1. The full set of networks used in the network analysis.

The academic dual network

Citation network
752,562 nodes and

2,206,116 directed edges

888,875 nodes and 3,640,960 directed edges

Coauthorship network
136,313 nodes and

290,301 undirected edges
38 yearly snapshots

1975–2012

Note. From 1975–2012, we compute snapshots of the citation network, in which nodes represent papers and directed edges represent citations, the
coauthorship network, in which nodes represent authors and undirected edges represent coauthorship of at least one paper, and the academic dual network,
which combines the citation and coauthorship networks and includes undirected edges representing authorship of a paper.

author a wrote paper p. To combine networks with directed
and undirected edges, we replaced each undirected edge
4a1 b5 with a pair of directed edges 4a1 b5 and 4b1a5. With
the addition of the 427,121 undirected edges indicating an
author wrote one of the WOS OR papers, the full aca-
demic dual network contains 888,875 nodes and 3,640,960
directed edges.

Because the citation network, coauthorship network, and
academic dual network evolve over time, it is important
to examine how the role of papers and scholars in the
flow of knowledge may have also changed over time. We
therefore created a set of yearly snapshots of the citation
network from 1975 to 2012, where the papers that were
published each year are added to the network of the for-
mer year, along with edges representing the references of
these new papers. Network snapshots of the coauthorship
and dual networks are generated in a similar way, including
any collaboration or authorship instance up to the snap-
shot’s year. Figure 1 depicts the full set of networks used
in the analysis.

For each network snapshot, we computed four centrality
indices that are commonly used in the literature to charac-
terize network structures and effectiveness (Barabási 2012,
Newman 2003, Wasserman and Faust 1994):

• The betweenness centrality of a node is a measure of
the number of the shortest paths between any two nodes
in the network in which this node is included (Freeman
1977). Formally, BC4v5 =

∑

s 6=v 6=t∈V �st4v5/�st , where �st

is the number of shortest paths from node s to node t,
�st4v5 is the number of shortest paths from s to t that
pass through node v, and V is the set of all nodes. We
defined the normalized betweenness centrality of node v

as the betweenness centrality of v divided by the maxi-
mum betweenness centrality of any node in the network:
nBC4v5= BC4v5/maxs∈V BC4s5.
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• The closeness centrality of a node is the inverse of
the average shortest path between this node and any other
node in the network (Freeman 1979). Formally, CL4v5 =

4�V �−15/
∑

s 6=v∈V dvs , where dvs is the length of the shortest
path from node v to node s.

• The clustering coefficient of a node quantifies how
close a node’s neighbors are to forming a clique, mean-
ing neighbors of the node are also neighbors of each
other (Watts and Strogatz 1998). Formally, CC4v5= 42Lv5/
4kv4kv − 155, where Lv is the number of edges between
the kv neighbors of node v.

• The PageRank of a node measures the node’s relative
importance in the network (Brin and Page 1998). Formally,
PR4v5 = 41 − d5/�V � + d

∑

s∈Bv
4PR4s5/L4s55, where Bv is

the set of all nodes linking to node v, L4s5 is the number of
outgoing links of node s, and d is a damping factor that we
set to 0.85, the suggested value from Brin and Page (1998).

2.4. Data Set for Tenure Impact Analysis

To evaluate whether prediction models for future academic
success could be useful to tenure committees, we manu-
ally built a data set of OR scholars who obtained a Ph.D.
since 1996. To obtain a more homogenous set of scholars,
we limited our analysis to scholars who held an assistant
professorship at a top-10 university for OR, as determined
by the number of INFORMS fellows at the university—the
set of universities used in this analysis were Carnegie Mel-
lon University, Columbia University, Cornell University,
Georgia Institute of Technology, Massachusetts Institute of
Technology, University of Michigan, Princeton University,
Stanford University, University of California, Berkeley, and
University of California, Los Angeles.

We first identified scholars who at some point had a
position in one of the target universities. We assume that
any OR professor at a top university will have attended
the INFORMS annual conference some year between 1996
and 2011, and we scraped a set of 41,103 presentation
records from this time period from the informs.org web-
site. We obtained a more limited set of 15,178 records by
filtering presentation records to ones potentially containing
the name of one of our target universities. We manually
reviewed this set of presentation records, obtaining a set
of 685 scholars who had at some point held a tenure-track
position at one of our target universities.

For each of the 685 scholars, we searched publicly avail-
able information on the Internet to obtain the year range of
each tenure-track position that scholar has held, as well as
the year they obtained their Ph.D. Although we were often
able to use the education and employment history sections
of a scholar’s CV or website, we also used affiliation infor-
mation from INFORMS conference presentations, employ-
ment histories on LinkedIn profiles, and previous versions
of departmental websites available through archive.org. We
removed 370 scholars from our data set because they had
obtained their Ph.D. before 1996, 99 scholars because they
are currently assistant professors, eight scholars because

they switched to a target university after receiving tenure
elsewhere, and five scholars because we were unable to
adequately determine their employment history. In this way,
we obtained a more limited set of 203 scholars.

OR is an interdisciplinary field, so the INFORMS annual
conference is attended by members of other academic com-
munities. The 203 scholars in the limited data set included
members of communities as varied as computer science,
public health, and chemical engineering. Because the cita-
tion database described in §2.1 is limited to OR publica-
tions, some of these scholars’ publication records are not
well represented by our data set, so we removed any schol-
ars with fewer than half of their journal publications present
in our data set. To obtain the list of all publications for
each scholar, we primarily used publication lists available
in CVs and research websites, but in cases where these
were not available we used data sets like Google Scholar
and, where appropriate, dblp. To obtain the publications
of each scholar in our publication data set, we manually
linked scholars’ publications to papers in our data set; we
did not use the automated name disambiguation described
in §2.2. The requirement that half of a scholar’s journal
articles be present in our data set limited our analysis to 75
scholars. In §4, when we evaluate if prediction models of
future scholar success can be used to improve tenure deci-
sions, we limit analysis to the 61 scholars who became an
assistant professor in 2003 or earlier. This set of 61 schol-
ars was constructed before performing any experiments to
compare model-driven tenure decisions against the deci-
sions of tenure committees.

Finally, we labeled the 61 scholars in our limited data set
based on whether they had received tenure at their first
top-10 institution. All 35 scholars who obtained tenure at
their first top-10 institution were labeled as having received
tenure. For the remaining 26 scholars who left their first
top-10 institution without attaining a tenured position, we
determined if they either left because tenure was not
granted/was not going to be granted, or for personal/other
reasons. For all scholars about whom team members did
not have knowledge of this determination, we performed
an interview with a senior faculty member at the scholar’s
institution using email to determine whether the scholar
left because of tenure-related reasons. Institutional review
board approval was obtained from both MIT and Tel Aviv
University to perform these interviews, and informed con-
sent was obtained from all interviewees. Seven scholars
were excluded from the analysis because of having left their
first position for personal reasons, and the remaining 19
scholars were labeled as having been denied tenure. One of
these scholars did not take another academic position after
being denied tenure and the remaining 18 took positions at
universities outside our list of top-10 institutions.

2.5. Scholar Metrics

In §3, we predict the future success of the 43,215 schol-
ars in our data set whose first publication was in 1995
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Table 1. Metrics used to evaluate models.

Category Prediction of author outcomes (§3) Analysis of tenure decisions (§4)

Short-term publication metrics Nine years after first publishing: Nine years after becoming an assistant professor:
• Paper count • Paper count
• A-journal paper count • A-journal paper count
• h-index • h-index
• Citation count • Citation count

Medium-term publication metrics Sixteen years after first publishing: Projected value for 16 years after
becoming an assistant professor:

• Paper count • Paper count
• A-journal paper count • A-journal paper count
• h-index • h-index
• Citation count • Citation count

Research INFORMS fellow (career award) INFORMS research award within 10
years of becoming an assistant professor

Teaching — Teaching award within 10 years of
becoming an assistant professor

Service — A-journal editor in March 2014
Demographics — Gender
Publication details — Mean number of coauthors on papers

Author subfield(s)

or earlier; because of the large number of scholars in this
analysis we were limited mainly to metrics that could be
computed from our bibliometric database. In §4 we eval-
uate the future success of 54 scholars who had assistant
professorships in top OR programs; given the small size of
this data set we computed a wider range of success metrics.
However, scholars in this analysis became assistant profes-
sors as late as 2003, so we are limited to metrics that can be
measured within the first decade of a scholar’s career. The
metrics selected for these two analyses are summarized in
Table 1.

We measure short- and medium-term success in publi-
cation using a scholar’s paper count, number of A-journal
publications (defined as publications in Management Sci-
ence, Mathematical Programming, Mathematics of Opera-
tions Research, or Operations Research), h-index, and cita-
tion count nine and 16 years after either first publishing
(§3) or becoming an assistant professor (§4). In the tenure
analysis, most scholars obtained an assistant professorship
too recently to observe 16-year publication metrics. As a
result, we instead use hierarchical linear models to obtain
projected 16-year metrics for each scholar. Details of these
projections are provided in Appendix B. Table 2 reports
the breakdown of these publication metrics among the 54
scholars used in the tenure analysis.

In §3, we also predict whether a scholar has become an
INFORMS fellow, an award that is given for outstanding
lifetime achievement in OR and management science. We
collected data on scholars who were announced as recipi-
ents of this award from 2002, the first year it was offered,
to 2013. We omitted scholars for whom we had no pub-
lication data before 1996 or when the author’s name was
ambiguous, leaving 193 recipients of the award. This met-
ric was not appropriate for use in §4, because none of the

scholars considered in that analysis are senior enough to
have won this career award.

In §4, we evaluate tenure decisions using a number
of other characteristics of scholars that are of interest to
tenure committees but that need to be collected manu-
ally for each scholar and are therefore not practical to
use in §3. Using the INFORMS Award Recipients web-
site (INFORMS 2014), we evaluated whether a scholar had
won a research-related award either from INFORMS or
from one of the INFORMS sections or societies within 10
years of becoming an assistant professor. Of the 54 schol-
ars, 17 had received a research award in this time frame.
To assess superlative teaching, we reviewed scholars’ CVs

Table 2. First quartile (Q1), median (Med.), and third
quartile (Q3) of publication metrics among the
54 scholars in the tenure data set, broken down
by whether they were tenured at their first top-
10 university.

5-year 9-year Proj. 16-year

Q1 Med. Q3 Q1 Med. Q3 Q1 Med. Q3

Tenured (n= 35)
Paper count 4 5 8 10 12 16 15 18 28
A-journal 1 3 4 3 5 8 4 8 12

paper count
Citation count 10 14 33 49 96 145 157 228 389
h-index 1 2 3 4 5 6 5 7 9

Not tenured
(n= 19)

Paper count 1 2 5 5 7 12 8 11 18
A-journal 1 1 2 3 4 5 4 6 7

paper count
Citation count 0 9 14 23 63 93 44 145 240
h-index 0 1 2 3 4 5 4 6 7
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and websites to determine whether they had won a teach-
ing award either from their university or from INFORMS
within 10 years of becoming an assistant professor. Of the
40 scholars who listed awards and honors, 24 had received
a teaching award in this time frame. To assess service to
the community, we identified whether each scholar was an
editor in chief, area editor, or associate editor at an A jour-
nal in March 2014. Of the 54 scholars, 29 were identi-
fied as editors. Though this metric does not control for the
year when a scholar became an assistant professor, being
an editor was not significantly associated with first year of
assistant professorship in bivariate logistic regression anal-
ysis (p = 0044). To identify the gender of scholars, we used
data from CVs or author bios where available and other-
wise used a scholar’s photograph on their research website
or first name. Of the 54 scholars, 43 are male (80%).

As part of the evaluation in §4, we also collected addi-
tional publication details, labeling all 54 of the scholars
with the mean number of coauthors on their papers and a
subfield classification. A scholar was labeled with a sub-
field s if at least half of the scholar’s papers from the
database in §2.1 fell in s. To make this determination,
we manually reviewed the title and abstract of all 855
papers for these 54 scholars. Possible subfield labels were
any editorial area from the journals Operations Research
or Management Science, with 21 subfields in total (see
Table 3). Because it is often difficult to determine the spe-
cific methodologies used from the abstract of an applied
OR paper, we only labeled a paper with a methodological
subfield (Decision Analysis, Optimization, Simulation, or
Stochastic Models) if no other subfield label could apply.
For instance, a paper about using optimization for rev-
enue management would be labeled Operations and Supply
Chains, whereas a paper about column generation strategies
would be labeled Optimization. Papers could be labeled
with multiple subfields. Forty-eight scholars were labeled
with a single subfield, with the most common being Oper-
ations and Supply Chains (26 scholars) and Optimization
(seven scholars). Six scholars were labeled with no subfield
and two were labeled with two subfields.

As part of a sensitivity analysis performed in §4, we
collected additional publication information about the 54
scholars. As detailed in §2.4, we reviewed the publication

Table 3. Set of subfield labels assigned to scholars.

Methods Contextual and crosscutting areas

• Decision analysis • Accounting • Judgment and decision making
• Optimization • Behavioral economics • Marketing
• Simuation • Business strategy • Military and homeland security
• Stochastic models • Computational economics • Operations and supply chains

• Entrepreneurship/Innovation • Organizations
• Env., energy, and sustainability • OR practice
• Finance • Policy mod./Public sector OR
• Games, info., and networks • Transportation
• Information systems

lists of all scholars and identified any publications not in
the bibliometric database from §2.1. We labeled each addi-
tional publication with its publication year and whether it
is in a highly ranked journal according to field-specific
journal rankings. To make this determination, we included
the A+ journals from finance and economics (Currie and
Pandher 2011, Ritzberger 2008), the A* journals from com-
puter science (Excellence for Research in Australia 2010),
the top four journals from marketing, information systems,
and statistics (Hult et al. 2009, Kelly Rainer and Miller
2005, Theoharakis and Skordia 2003), and the interdisci-
plinary journals Science and Nature. In total, we identified
24 additional A-journal publications through 2012; 17 of
these papers had been published within the first five years
of assistant professorship.

3. Prediction of a Scholar’s Future
Success

For a model to be useful to a hiring or tenure committee,
it must be able to accurately predict the future success of
a scholar based on early-career data. In this section, we
define statistical models to predict the set of nine metrics
identified in §2.5 using only centrality measures available
within five years of an author’s first publication. To be
able to observe long-term career outcomes, we limited our
data set to the 43,215 scholars identified in §2.2 whose first
paper was published in or before 1995. We randomly split
this set of scholars so that 70% were in the training set and
30% were in a testing set.

The eight publications metrics (paper count, A-journal
paper count, h-index, and citation count nine and 16 years
after first publication) are all continuous outcomes. For
each publication metric m, we defined a baseline prediction
model that predicted the metric using only citation count
five years after first publication, C5. To capture nonlinear
relationships between C5 and each publication metric m,
we trained random forest models (Breiman 2001) using the
R randomForest package (Liaw and Wiener 2002), select-
ing parameters using 10-fold cross-validation with the R
caret package (Kuhn 2015).

For each of the eight outcomes, we compared this base-
line model against two other random forest models, each
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of which also had parameters selected via 10-fold cross-
validation. The first model (four-metric model) used the
four publication metrics measured five years after first pub-
lication: the number of citations of the author’s papers (C55,
the h-index of the author (h5), the number of publications
by the author (P5), and the number of A-journal publi-
cations by the author (A5). The second model (centrality
model) used these four metrics in addition to centrality
measures for both the author in the coauthorship and dual
networks and the author’s papers in the citation and dual
networks. We defined the following additional independent
variables, each of which was measured five years after the
first publication by the authors:

• The betweenness centrality of the author in the coau-
thorship network (BCcA

5 ) and the dual network (BCdA
5 ), and

the (arithmetic) mean betweenness centrality of the author’s
papers in the citation network (BCcP

5 ) and in the dual net-
work (BCdP

5 )
• The normalized betweenness centrality of the author

in the coauthorship network (nBCcA
5 ) and the dual network

(nBCdA
5 ), and the mean normalized betweenness centrality

of the author’s papers in the citation network (nBCcP
5 ) and

in the dual network (nBCdP
5 )

• The closeness centrality of the author in the coauthor-
ship network (CLcA

5 ) and the dual network (CLdA
5 ), and the

mean closeness centrality of the author’s papers in the cita-
tion network (CLcP

5 ) and in the dual network (CLdP
5 )

• The clustering coefficient of the author in the coau-
thorship network (CCcA

5 ) and the dual network (CCdA
5 ), and

the mean clustering coefficient of the author’s papers in the
citation network (CCcP

5 ) and in the dual network (CCdP
5 )

Table 4. Testing-set root-mean-square error (RMSE) and mean absolute percentage error (MAPE), with bootstrap 95%
confidence intervals.

Baseline Four-metric Centrality

Metric RMSE MAPE RMSE MAPE RMSE MAPE

9-year paper count 208 79 103 20 103 21
(2.8, 2.8) (78, 81) (1.3, 1.3) (20, 21) (1.3, 1.3) (20, 21)

16-year paper count 507 127 403 56 401 54
(5.7, 5.8) (124, 131) (4.3, 4.5) (54, 58) (4.1, 4.2) (53, 56)

9-year A-journal paper count 100 32 004 5 004 5
(1.0, 1.0) (31, 33) (0.4, 0.4) (5, 6) (0.4, 0.4) (5, 6)

16-year A-journal paper count 104 38 008 10 008 11
(1.4, 1.5) (37, 39) (0.8, 0.8) (10, 11) (0.8, 0.8) (10, 11)

9-year citation count 703 58 608 54 603 45
(7.2, 7.6) (58, 60) (6.8, 7.2) (53, 55) (6.3, 6.7) (45, 47)

16-year citation count 3900 217 3605 178 3305 148
(38.9, 40.3) (207, 226) (36.3, 38.5) (169, 184) (33.3, 34.8) (146, 159)

9-year h-index 006 31 004 22 004 18
(0.6, 0.6) (30, 31) (0.4, 0.4) (22, 22) (0.4, 0.4) (18, 19)

16-year h-index 103 53 100 38 009 34
(1.3, 1.3) (53, 54) (1.0, 1.0) (38, 39) (0.9, 0.9) (34, 35)

Notes. Models compared are the baseline prediction model, which uses the total number of an author’s papers’ citations, the four-metric model, which
uses citation counts, h-index, publication counts, and A-journal publication counts, and the network centrality model, which uses citation counts, h-index,
publication counts, A-journal publication counts, and centrality measures in the coauthorship, citation, and dual networks from the same time frame. All
three models use data from the five years following an author’s first publication.

• The PageRank of the author in the coauthorship net-
work (PRcA

5 ) and the dual network (PRdA
5 ), and the mean

PageRank of the author’s papers in the citation network
(PRcP

5 ) and in the dual network (PRdP
5 )

Table 4 displays the testing-set root-mean-square errors
(RMSE) and mean average percentage errors (MAPE) of
the three models for each of the eight publication metrics,
with bootstrap percentile 95% confidence intervals (Davi-
son and Hinkley 1997) computed using the R boot pack-
age (Canty and Ripley 2014). To accommodate outcomes
with value 0 in the computation of MAPE, we used modified
formula MAPE4ŷ1 y5 =

∑n
i=1 10044�ŷi − yi�5/max4yi1155,

where ŷ is the vector of predicted outcomes, y is the vec-
tor of true outcomes, and n is the number of observations.
The network centrality model obtained the largest improve-
ments in MAPE over the baseline model on 9- and 16-year
A-journal paper count and on 9- and 16-year paper count,
decreasing the MAPE by more than half in all cases. The
improvement over the baseline was more modest on the
9- and 16-year citation count and h-index metrics, but the
network centrality models still improved the MAPE by more
than 10% compared to the baseline model in all cases. The
network centrality model had nearly identical performance
to the four-metric model when predicting the 9- and 16-year
paper count, A-journal paper count, and h-index outcomes,
yielding RMSE improvements of 0.4 (95% CI 0.3–0.6) when
predicting 9-year citation count and 3.0 (95% CI 2.4–4.5)
when predicting 16-year citation count. For the 16-year cita-
tion outcome, adding the centrality measures to the four-
metric model yielded a 29% improvement in MAPE (95%
CI 19%–30%). The 16-year citation count proved to be the
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hardest metric to predict, with the MAPE of all models
exceeding 100%. As expected, 16-year outcomes were more
difficult to predict than 9-year outcomes in all cases.

In addition to the publication metrics, we predicted the
probability that each scholar would become an INFORMS
fellow (pf ) using the same independent variables. Because
of the small number of positive observations, we used
logistic regression models instead of random forests for
these models.

Our baseline model was

ln
pf

1 −pf
= �0 +�C5

C5

Our four-metric model was

ln
pf

1 −pf
= �0 +�C5

C5 +�h5
h5 +�P5

P5 +�A5
A5

Our network centrality model was

ln
pf

1 −pf
= �0 +�C5

C5 +�h5
h5 +�P5

P5 +�A5
A5

+
∑

t∈8cA1dA1cP1dP9

∑

M∈8BC1nBC1CL1CC1PR9

�M t
5
M t

5

Figure 2 displays the receiver operating characteristic
(ROC) curve for testing-set predictions of a scholar becom-
ing an INFORMS fellow. Especially at high sensitivities,

Figure 2. Testing-set receiver operating characteristic
curve for predicting if a scholar will become
an INFORMS fellow.
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Note. Models evaluated are the baseline prediction model (AUC= 0082),
which uses citation totals in the five years following an author’s first pub-
lication, the four-metric model (AUC = 0094), which uses citation counts,
h-index, publication counts, and A-journal publication counts, and the net-
work centrality model (AUC= 0097), which uses citation counts, h-index,
publication counts, A-journal publication counts, and centrality measures
in the coauthorship, citation, and dual networks from the same time frame.

the network centrality model outperforms both the baseline
and the four-metric models—the network centrality model
could identify 90% of INFORMS fellows in the testing
set with a false positive rate of 7%, improving over the
false positive rate of 56% for the baseline model (boot-
strap 95% CI for improvement 43%–50%) and 17% for
the four-metric model (95% CI for improvement 4%–20%).
As determined by the area under the ROC curve (AUC),
the network centrality model can differentiate between
a randomly selected future INFORMS fellow and non-
INFORMS fellow 97% of the time using publication data
from their first five years of publication, improving over
the 82% performance of the baseline model (95% CI for
improvement 13%–15%) and the 94% performance of the
four-metric model (95% CI for improvement 1%–4%).

4. Evaluating Data-Driven Tenure
Decisions

In §3, we compared models for predicting future research
impact that use data from the first five years of a scholar’s
academic career, and we found that models trained with a
variety of publication measures and network centrality mea-
sures outperform models trained only using citation infor-
mation. However, it remains to be seen if these models can
be useful to tenure committees, as committees have access
to information not available to the models from §3, includ-
ing forthcoming papers, the text of published papers, teach-
ing evaluations, and letters of support. To address this ques-
tion, we built a data set of the 54 scholars who obtained a
Ph.D. in 1996 or later and held an assistant professorship at
a top-10 OR program in 2003 or earlier, as detailed in §2.4.

To compare the tenure decision-making process currently
being used by universities to the proposals made by the
network centrality models from §3 for a set of scholars S,
we first rank the scholars in S by their predicted value
for each of the eight publication metrics used in §3, using
publication information from five years after assistant pro-
fessorship as the independent variables for each scholar.
If t of the scholars in S were tenured at a top university,
then we select the t scholars with the best average rank
across the eight publication metrics as the “tenure selec-
tions” of the network centrality models. Among the 54
scholars in the data set, 35 (65%) were tenured at a top-
10 university. The network centrality models agreed with
tenure committees on 38 (70%) of the scholars, tenuring
eight scholars not selected by the committees and not tenur-
ing eight scholars selected by the committees.

Figure 3 compares the tenure decisions of the network
centrality models against the decisions of tenure commit-
tees across the eight future publication metrics, displaying
both the relative change in the mean value of the metric
among tenured scholars (top) and the change in the propor-
tion of above-median scholars given tenure (bottom). Boot-
strap percentile confidence intervals (Davison and Hinkley
1997) were computed with the R boot package (Canty and
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Figure 3. Difference (and bootstrap 95% CI) in future publication outcomes between the scholars selected for tenure by
the network centrality models from §3 and the scholars selected by tenure committees.

0 10–10

9-year paper count

Proj. 16-year paper count

9-year A-journal paper count

Proj. 16-year A-journal paper count

9-year citation count

Proj. 16-year citation count

9-year h-index

Proj. 16-year h-index

9-year paper count

Proj. 16-year paper count

9-year A-journal paper count

Proj. 16-year A-journal paper count

9-year citation count

Proj. 16-year citation count

9-year h-index

Proj. 16-year h-index

20 30

Relative change in mean for tenured scholars (%)

0 10–10 20 30

Change in percentage of top scholars tenured

Notes. (Top) Relative change in mean value among tenured scholars for each metric. For instance, committees tenured scholars with average 16-year
citation count 323 and our models would have tenured scholars with average 16-year citation count 361, a relative change of 12%. (Bottom) Change in
the percentage of top-performing (above-median) scholars tenured for each metric. For instance, committees tenured 74% of top scholars for the 9-year
citation count and our models would have tenured 93%, a change of 19%.

Ripley 2014). The network centrality model obtained sta-
tistically significant improvements in mean values for the
9- and projected 16-year A-journal paper count, citation
count, and h-index metrics. The models showed the largest
relative change in mean A-journal paper count and the
smallest relative change in paper count, and the models
obtained an improvement of 1.4 papers (95% CI 0.0, 3.5),
1.3 A-journal papers (95% CI 0.2, 2.4), 38 citations (95%
CI 9, 63), and 0.8 h-index (95% CI 0.2, 1.3) in pro-
jected 16-year outcomes over the scholars who were actu-
ally given tenure. The network centrality models increased
the percentage of above-median scholars tenured by more
than 10% in seven of the eight publication metrics, with
four statistically significant improvements and one statisti-
cally noninferior change.

For each type of publication metric, Figure 4 plots the
5-year and projected 16-year values for the 54 scholars,
using color to indicate the tenure decision by committees
and the network centrality models for that scholar. Nearly
all scholars given tenure by a tenure committee but not

the model (blue points in Figure 4) had below-median
long-term metrics. Conversely, the majority of the schol-
ars chosen by the model as replacements (purple points in
Figure 4) had above-median long-term outcomes. The net-
work centrality model did a better job of identifying schol-
ars who are “diamonds in the rough,” with below-median
5-year metric values and above-median projected 16-year
values. Only three of the 29 blue points in Figure 4 with
below-median 5-year outcomes had above-median 16-year
outcomes, compared to six of the 10 purple points with
below-median 5-year outcomes.

We also assess the performance of the other models from
§3 in selecting scholars to tenure. If the four-metric mod-
els had been used instead of the network centrality models,
exactly the same set of scholars would have been selected
for tenure. On the other hand, consider a simpler base-
line model, which selects scholars for tenure based on their
5-year citation count alone. To tenure 35 of the 54 schol-
ars, the same number as tenure committees, the model
tenures scholars with nine or more citations by year five.
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Figure 4. Comparison of 5-year and projected 16-year publication metrics for each scholar.
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Notes. The colors indicates the tenure decision by tenure committees and by the network centrality models—red indicates both gave tenure, green means
neither gave tenure, blue means only the committee gave tenure, and purple means only the models gave tenure. The dashed lines indicate the median
5-year and projected 16-year outcomes.

This simple model agrees with tenure committees on 38
(70%) of the tenure decisions. The simple model had sim-
ilar performance to the network centrality models on the
9- and projected 16-year citation count and h-index met-
rics, but it performed worse on the metrics related to paper
count. On the 9- and projected 16-year paper count and
A-journal paper count metrics, the simple model had no
statistically significant changes in mean value or propor-
tion of top scholars tenured compared to tenure committees.
Meanwhile, the network centrality model had three statis-
tically significant improvements and three statistically non-
inferior changes across these eight comparisons. Although
the citation-based approach is much simpler than the net-

work centrality models and performs equally well on the
citation count and h-index metrics, it has worse perfor-
mance at identifying scholars who perform well on publi-
cation count metrics.

The comparison of the network centrality model to
tenure committees is robust to changes in the data source
for future publication outcomes. As a sensitivity analy-
sis, we augmented the 9- and 16-year A-journal publica-
tion counts with the 24 additional publications identified in
§2.5. The performance of the proposed model compared to
tenure committees was similar—the mean 9- and projected
16-year A-journal publication counts exhibited relative
increases of 13% (95% CI 2, 29) and 13% (95% CI 2, 28),
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respectively, and the rate of above-median scholars given
tenure for the 9- and projected 16-year A-journal publica-
tion counts increased by 13% (95% CI 0, 26) and 15%
(95% CI 0, 28), respectively.

We found no statistically significant evidence that our
approach would cause changes in the composition of schol-
ars given tenure across the additional outcomes of interest
identified in §2.5:

—Proportion of scholars receiving an INFORMS re-
search award within 10 years of becoming an assistant pro-
fessor (95% CI −0021, 0.16).

—Proportion of scholars receiving a teaching award
within 10 years of becoming an assistant professor (95%
CI −0025, 0.09). The unbalanced nature of this confidence
interval likely stems from tenure committees’ access to
teaching evaluations.

—Proportion of scholars who were A-journal editors in
March 2014 (95% CI −0010, 0.19).

—Proportion of scholars who are male (95% CI −0006,
0.14).

—Mean number of coauthors on publications (95% CI
−0017, 0.05).

—Proportion of scholars from each subfield (95% CI for
each subfield in Table 3 contains 0).

5. Discussion and Conclusions
Using a bibliometric database of OR papers, we established
that a scholar’s publications early in their career can be
used to predict later-career success and that these predic-
tions could yield statistically significant improvements in
the future publication metrics of scholars tenured by top OR
programs. The latter result is especially noteworthy because
the models developed in this paper did not have access to
many of the sources of information available to tenure com-
mittees. This suggests that prediction models of future aca-
demic success could be useful to tenure committees.

It is important to note that tenure committees consider
many criteria when making tenure decisions. Although the
models proposed in this work rank scholars based on pre-
dictions of various measures of future research productiv-
ity, they do not account for other important considerations
for tenure, such as a scholar’s service to their university,
teaching ability, or personality. Some of these other crite-
ria can be quantified, and in §4 we demonstrated that the
scholars tenured by the proposed model do not statistically
significantly differ from those selected by tenure commit-
tees in the rate of research awards, teaching awards, or A-
journal editorships, nor do they significantly differ in the
distribution of subfield, gender, or typical number of coau-
thors. However, other criteria, such as personality or cre-
ativity (Azoulay et al. 2011), are difficult to quantify, and
tenure committees must rely on imprecise measures when
evaluating candidates based on these factors. Criteria not
related to research productivity can be important in the
tenure decision—among the five pairs of scholars in our OR

tenure data set with identical 5-year research productivity
values (paper count, A-journal paper count, citation count,
and h-index), one pair of scholars had different tenure out-
comes (one was tenured and the other was not). Because the
models presented in this work are limited to predictions of
future research productivity and cannot evaluate candidates
on all criteria of interest to tenure committees, they would
be most useful as decision aids to complement the existing
evaluation procedures used by tenure committees.

The analysis in §4 has several limitations. First, the total
number of scholars in the analysis set is relatively small,
making it difficult to obtain sharp estimates of the differ-
ences in long-term outcomes between the scholars tenured
by their universities and the scholars selected for tenure
by the models presented in this work. Furthermore, the
analysis evaluates the proposed model based on observed
long-term outcomes for scholars, even in cases where the
proposed model disagrees with the choice made by tenure
committees. The initial tenure decision might in fact affect
a scholar’s long-term outcomes; for instance, failing to get
tenure at a top-10 institution might decrease a scholar’s
research output as they work to adjust to a new university,
or it might alternately provide motivation, yielding a boost
in productivity. Finally, the analysis treats the number of
tenure slots across the programs studied as a fixed resource,
an assumption made to simplify the comparison of the pro-
posed model’s choices against those of tenure committees.
In reality, no such limit exists.

The models described in this work could be expanded
in a number of ways. First, the data sources in this work
were limited in scope—we only considered publications
and scholars from the field of OR, and we limited our study
of the effectiveness of data-driven tenure decisions to top-
ranked OR programs. Although we also believe the pro-
posed models could be useful in other fields and at lower-
ranked programs, the only way to confirm the broader
effectiveness of the proposed methodology is to test it in
other settings. Furthermore, we only considered models for
the tenure decision. Similar models could be used in other
contexts, such as hiring new assistant professors, evaluating
candidates for grants and awards, and hiring scholars who
previously held tenure-track positions at other institutions.
Additional experimentation is needed to evaluate the use-
fulness of predictions of future research impact in making
these decisions.

For the prediction models described in this work to be
useful to tenure committees, they need to be implemented
and separately calibrated for a broad range of academic dis-
ciplines using a large-scale bibliometric database. First, this
implementation requires large-scale name disambiguation to
be performed across the bibliometric database. Furthermore,
our network centrality models rely on network centrality
measures computed over large citation and coauthorship
networks. The networks considered in this paper consisted
of fewer than 1 million nodes and 10 million edges, and
we were able to compute all centrality measures required
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using a single personal computer. However, networks for
other fields might be significantly larger, resulting in a larger
computational burden to compute the centrality measures.
Researchers have reported success in using parallel pro-
cessing to speed up centrality computations in large net-
works (Bader and Madduri 2006), which could reduce this
hurdle to implementing a decision support system. Given
the significant effort and data required to implement the
models presented in this work, the models would need to
be developed and distributed as a complementary service
to an existing bibliometric database like Google Scholar or
the Thomson Reuters Web of Science. Alternately, tenure
committees might favor the four-metric models, which do
not rely on centrality and yielded similar predictive perfor-
mance in §3 and identical performance at selecting scholars
to tenure in §4. Models would need to be updated periodi-
cally, as patterns of publication change over time. If mod-
els relying on network centrality gain widespread use in
the tenure decision-making process then candidates might
change their publication behavior to boost their centrality in
citation and coauthorship networks, prompting further recal-
ibration of the proposed model.

Though broader evaluation is needed and hurdles remain
to deliver the prediction models developed in this work to
tenure committees across a range of academic disciplines,
the demonstrated effectiveness of these models in the field
of OR suggests potential for data-driven models as decision
aids to academic personnel committees.
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Appendix A. Name Disambiguation Algorithm

Bibliometric entries from the WOS provide either the first ini-
tial and last name or the first and last name for the authors of
each paper, leaving ambiguity as to whether two authors sharing
the same first initial and last name are in fact the same person.
To address this issue, we performed name disambiguation, which
associates each author on each paper with an author cluster that
represents a single person. This process consists of two steps—
first we predict the probability that two authors who share the
same first initial and last name are in fact the same person, and
then we use agglomerative clustering to assign each paper to an
author cluster.

To predict the probability that two authors who share a first
initial and last name are the same person, we collected records for
431,395 papers from the WOS database for the field of economics
as well as 299,707 papers from the Social Sciences Research
Network (SSRN), which is a popular database of preprints and
working papers for a number of fields including economics. We
considered papers between these two databases to be the same
if they have the same title and same author last names, yield-
ing 37,848 matches with a total of 72,657 author records. Among
these 37,848 papers, there were 261,203 pairs of papers for which

one author on each had the same first initial and last name. We
labeled each pair as being the same person if each shared the
same SSRN login id and a different person if they had a different
login id; 214,577 pairs (82.1%) were labeled as matches.

For each pair of papers, we defined the following variables:
• x1: Measure of how well middle names match—3 if both

are reported and matching, 2 if neither is reported, 1 if one is
reported and one is not reported, and 0 if both are reported and
nonmatching

• x2: Measure of how well first names match—3 if both first
names are fully reported and matching, 2 if both first names are
abbreviated, 1 if one first name is fully reported and the other is
abbreviated, and 0 if both first names are fully reported but don’t
match

• x3: Measure of how well the emails match—3 if both emails
are fully reported and matching, 2 if neither email is reported, 1
if one email is reported and the other is not, and 0 if both emails
are fully reported and not matching

• x4: Whether the document type (proceedings paper, journal
article, letter, or other) of the two articles is the same

• x5: Cosine similarity between the titles of the two articles.
The cosine similarity is the dot product of the word frequency
vectors divided by the magnitude of each vector. The maximum
value is 1, indicating an identical distribution of word frequencies,
and the minimum value is 0, indicating no words in common

• x6: Cosine similarity between the source names of the two
articles

• x7: Cosine similarity between the abstracts of the two articles
• x8: Cosine similarity between names of the institutions of

the two authors
• x9: Cosine similarity between the author-provided keywords

of the two articles
• x10: Cosine similarity between the keywords of the two arti-

cles generated by WOS
• x11: Cosine similarity between the sets of coauthor names

for the two articles (represented by first initial/last name pairs)
• x12: The minimum number of coauthors divided by the max-

imum number of coauthors between the two articles
• x13: The difference in number of coauthors between the two

articles
• x14: The difference in number of citations through 2012

between the two articles
• x15: The difference in publication year between the two

articles
• x16: The difference in number of pages between the two

articles
Using a 70% random sample of the paper pairs, we trained

a logistic regression model using variables x1 through x16. Vari-
ables x1 through x4 were modeled as factor variables and vari-
ables xi, x

2
i , and x3

i were included in the model specification for
i ∈ 851 0 0 0 1169. This model obtained a test-set AUC of 0.921,
meaning it could differentiate between a randomly selected true
positive and true negative pair 92.1% of the time.

Among the 198,310 papers classified in the OR field in the WOS
data set, there were 106,130 unique first initial/last name values.
For each of these names n, there is a set of papers Sn containing
authors with that first initial and last name. For each pair of papers i
and j in a set Sn, the logistic regression model provides a predicted
probability pij that the authors in this pair of papers with name n

are the same person. The distribution of names is similar between
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Figure B.1. The publication metrics over time among the 75 scholars used to obtain projected 16-year outcomes.
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OR and economics—there is a cosine similarity of 0.75 between
the vectors of last name frequencies in these two WOS data sets—
so it is reasonable to expect the predictive performance of the
logistic regression model to generalize to the new data set. For a
given clustering of Sn, we define yij to be 1 if papers i and j are in
the same cluster and 0 otherwise. Then the likelihood of a given
clustering, assuming independence between link probabilities, is
çi<j4yijpij + 41−yij541−pij55, and the log-likelihood is therefore
∑

i<j log41 − pij5+
∑

i<j yij log4pij/41 − pij55. Thus, we seek the
clustering that maximizes the sum of log4pij/41 − pij55 over all
pairs of papers i and j that are assigned to the same cluster. We
solve this problem with agglomerative clustering, beginning with
no nodes assigned to any cluster and iteratively adding the node
to the cluster that most improves

∑

i<j yij log4pij/41 − pij55 over
the nodes i and j assigned to clusters. If no improving addition
can be made to any current cluster, a new cluster is created with

one of the unassigned nodes. The agglomerative clustering yielded
136,313 author clusters.

We evaluated the quality of the clustering using a set of 166
scholars who obtained their assistant professorship in 1996 or
later and who published at least one paper in the OR literature;
we manually identified all WOS for these scholars using CVs
and other available publication information while generating the
data set for the tenure analysis. For these scholars, we witnessed
lumping (assigning two individuals to the same cluster) in 33 of
the clusters (19.9%) and splitting (assigning papers from the same
individual to different clusters) in 17 clusters (10.2%). Eight of
the clusters (4.8%) demonstrated both lumping and splitting, and
13 of the 25 clusters that exhibited lumping had only one or two
extra papers. Although the majority of scholars were perfectly dis-
ambiguated using the method, there are still a number of scholars
for whom the assigned clusters were incorrect.
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Figure B.2. Estimates �̂0 and �̂1 when fitting scholar-specific linear regression models log4msy +15= �̂0 + �̂1 log4y5+�
to predict publication metric msy for scholar s, y years after becoming an assistant professor.
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Appendix B. Projected 16-Year Publication
Metrics

Using linear models, we seek to project 16-year publication met-
rics based on all available publication data for a scholar. To per-
form these projections, we use the 75 scholars identified in §2.4
who held assistant professor positions in the OR field starting in
1996 or after.

In Figure B.1, we plot the number of years into each of these
scholars’ career against each of the four publication metrics of
interest. Data are only plotted for the years available for a given
scholar. For instance, no 13-, 14-, 15-, or 16-year paper counts
were available for the scholar with 45 published papers after
year 12. Each plot displays some degree of heteroscedasticity,
in which the outcome metric’s variance increases over time; this
effect is particularly dramatic for the citation count outcome. To
deal with this heteroscedasticity, we log-transform each outcome
variable, predicting log4m+15 instead of m for each metric m. If

we used linear model log4m+ 15= �0 +�1y + �, where y is the
number of years since a scholar became an assistant professor, we
would be modeling an exponential growth of the outcome vari-
ables through time. However, metrics like a scholar’s total cita-
tion count are known to grow polynomially through time (Hirsch
2007). As a result, we used a log-log regression model of form
log4m+ 15= �0 +�1 log4y5+ � for each metric m.

To obtain scholar-specific projections for 16-year publication
metrics, we used hierarchical linear models. In these models, each
observation is of publication metric value msy for a scholar s at
year y after becoming an assistant professor, and observations are
grouped by scholars in the multilevel model. To assess the need
for random intercepts and slopes, for each scholar s we fitted a
linear regression model log4msy + 15 = �̂0 + �̂1 log4y5 + �. The
resulting intercept and slope estimates for the 75 regression mod-
els trained for each outcome metric are displayed in Figure B.2.
It is clear that both intercept and slope vary across scholars for all
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Figure B.3. Final model fits for each of the publication metric prediction models.
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metrics, and further that these two coefficients are negatively cor-
related. As a result, we used random slopes and intercepts in our
hierarchical models and allowed correlation between the random
intercepts and slopes.

We fit the hierarchical models with the R nlme package (Pin-
heiro et al. 2013). The models for paper count, A-journal paper
count, citation count, and h-index had R2 values of 0.93, 0.91,
0.91, and 0.88, respectively, and the model fits are presented in
Figure B.3. As a final step, we used the models to project the
16-year publication metrics for each scholar, using that scholar’s
random intercept and slope for the projection.
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